Targeting male mosquito swarms to control malaria vector density
نویسندگان
چکیده
Malaria control programs are being jeopardized by the spread of insecticide resistance in mosquito vector populations. It has been estimated that the spread of resistance could lead to an additional 120000 deaths per year, and interfere with the prospects for sustained control or the feasibility of achieving malaria elimination. Another complication for the development of resistance management strategies is that, in addition to insecticide resistance, mosquito behavior evolves in a manner that diminishes the impact of LLINs and IRS. Mosquitoes may circumvent LLIN and IRS control through preferential feeding and resting outside human houses and/or being active earlier in the evening before people go to sleep. Recent developments in our understanding of mosquito swarming suggest that new tools targeting mosquito swarms can be designed to cut down the high reproductive rate of malaria vectors. Targeting swarms of major malaria vectors may provide an effective control method to counteract behavioral resistance developed by mosquitoes. Here, we evaluated the impact of systematic spraying of swarms of Anopheles gambiae s.l. using a mixed carbamate and pyrethroid aerosol. The impact of this intervention on vector density, female insemination rates and the age structure of males was measured. We showed that the resulting mass killing of swarming males and some mate-seeking females resulted in a dramatic 80% decrease in population size compared to a control population. A significant decrease in female insemination rate and a significant shift in the age structure of the male population towards younger males incapable of mating were observed. This paradigm-shift study therefore demonstrates that targeting primarily males rather than females, can have a drastic impact on mosquito population.
منابع مشابه
Structure and dynamics of male swarms of Anopheles gambiae.
Mosquito swarms are poorly understood mating aggregations. In the malaria vector Anopheles gambiae Giles, they are known to depend on environmental conditions, such as the presence of a marker on the ground, and they may be highly relevant to reproductive isolation. We present quantitative measurements of individual An. gambiae positions within swarms from Donéguébougou, Mali, estimated by ster...
متن کاملDeveloping an expanded vector control toolbox for malaria elimination
Vector control using long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) accounts for most of the malaria burden reductions achieved recently in low and middle-income countries (LMICs). LLINs and IRS are highly effective, but are insufficient to eliminate malaria transmission in many settings because of operational constraints, growing resistance to available insecticides ...
متن کاملNew evidence of mating swarms of the malaria vector, Anopheles arabiensis in Tanzania
Background: Malaria mosquitoes form mating swarms around sunset, often at the same locations for months or years. Unfortunately, studies of Anopheles swarms are rare in East Africa, the last recorded field observations in Tanzania having been in 1983. Methods: Mosquito swarms were surveyed by trained volunteers between August-2016 and June-2017 in Ulanga district, Tanzania. Identified Anopheles...
متن کاملThe dance of male Anopheles gambiae in wild mating swarms.
An important element of mating in the malaria vector Anopheles gambiae Giles in nature is the crepuscular mating aggregation (swarm) composed almost entirely of males, where most coupling and insemination is generally believed to occur. In this study, we mathematically characterize the oscillatory movement of male An. gambiae in terms of an established individual-based mechanistic model that pa...
متن کاملDistribution, Mechanisms, Impact and Management of Insecticide Resistance in Malaria Vectors: A Pragmatic Review
Malaria is still a major burden causing the death of nearly 655,000 people each year, mostly in children under the age of five, and affecting those living in the poorest countries [1]. Currently, the major obstacles to malaria control and elimination are the absence of a protective vaccine, the spread of parasite resistance to anti-malarial drugs and the mosquito resistance to insec‐ ticides [2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017